Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966381

ABSTRACT

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Subject(s)
Dexamethasone , Metformin , Pancreas , Piper nigrum , Plant Oils , Animals , Blood Glucose , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Dyslipidemias/drug therapy , Fibrosis , Insulin Resistance , Metformin/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , Pancreas/drug effects , Pancreas/pathology , Piper nigrum/chemistry , Plant Oils/pharmacology , Plant Oils/therapeutic use , Rats , Rats, Wistar , COVID-19 Drug Treatment
3.
BMC Vet Res ; 18(1): 90, 2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1789121

ABSTRACT

BACKGROUND: Infectious bronchitis virus (IBV) leads to huge economic losses in the poultry industry worldwide. The high levels of mutations of IBV render vaccines partially protective. Therefore, it is urgent to explore an effective antiviral drug or agent. The present study aimed to investigate the in vivo anti-IBV activity of a mixture of plant essential oils (PEO) of cinnamaldehyde (CA) and glycerol monolaurate (GML), designated as Jin-Jing-Zi. RESULTS: The antiviral effects were evaluated by clinical signs, viral loads, immune organ indices, antibody levels, and cytokine levels. The infection rates in the PEO-M (middle dose) and PEO-H (high dose) groups were significantly lower than those in the prevention, positive drug, and PEO-L (low dose) groups. The cure rates in the PEO-M and PEO-H groups were significantly higher than those in the prevention, positive drug, and PEO-L groups, and the PEO-M group had the highest cure rate of 92.31%. The symptom scores and IBV mRNA expression levels were significantly reduced in the PEO-M group. PEO significantly improved the immune organ indices and IBV-specific antibody titers of infected chickens. The anti-inflammatory factor levels of IL-4 and IFN-γ in the PEO-M group maintained high concentrations for a long time. The IL-6 levels in the PEO-M group were lower than those in prevention, positive drug, and PEO-L groups. CONCLUSION: The PEO had remarkable inhibition against IBV and the PEO acts by inhibiting virus multiplication and promoting immune function, suggesting that the PEO has great potential as a novel anti-IBV agent for inhibiting IBV infection.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Oils, Volatile , Poultry Diseases , Viral Vaccines , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chickens , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Oils/pharmacology , Plant Oils/therapeutic use , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Viral Vaccines/therapeutic use
4.
Arch Pharm Res ; 44(5): 439-474, 2021 May.
Article in English | MEDLINE | ID: covidwho-1202014

ABSTRACT

Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.


Subject(s)
Artemisia , Phytotherapy/methods , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artemisia/chemistry , Humans , Medicine, Traditional , Plant Extracts/therapeutic use , Plant Oils/pharmacology , Plant Oils/therapeutic use , COVID-19 Drug Treatment
5.
Int J Environ Res Public Health ; 17(20)2020 10 19.
Article in English | MEDLINE | ID: covidwho-1006216

ABSTRACT

(1) Background: The COVID-19 pandemic and the imposition of strict but necessary measures to prevent the spread of the new coronavirus have been, and still are, major stress factors for adults, children, and adolescents. Stress harms human health as it creates free radicals in the human body. According to various recent studies, volatile oils from various aromatic plants have a high content of antioxidants and antimicrobial compounds. An external supply of antioxidants is required to destroy these free radicals. The main purpose of this paper is to create a yoghurt with high antioxidant capacity, using only raw materials from Romania; (2) Methods: The bioactive components used to enrich the cow milk yoghurt were extracted as volatile oils out of four aromatic plants: basil, mint, lavender and fennel. Initially, the compounds were extracted to determine the antioxidant capacity, and subsequently, the antioxidant activity of the yoghurt was determined. The 2,2-diphenyl-1-picrylhy-drazyl (DPPH) method was used to determine the antioxidant activity; (3) Results: The results show that cow milk yoghurt enhanced with volatile oils of basil, lavender, mint and fennel, encapsulated in sodium alginate has an antioxidant and antimicrobial effect as a staple food with multiple effects in increasing the body's immunity. The antioxidant activity proved to be considerably higher than the control sample. The highest antioxidant activity was obtained on the first day of the analysis, decreasing onwards to measurements taken on days 10 and 20. The cow milk yoghurt enriched with volatile basil oil obtained the best results; (4) Conclusions: The paper shows that yoghurts with a high antioxidant capacity were obtained, using only raw materials from Romania. A healthy diet, compliance with safety conditions and finding appropriate and safe methods to increase the body's immunity is a good alternative to a major transition through harder times, such as pandemics. The creation of food products that include natural antioxidant compounds combines both the current great possibility of developing food production in Romania and the prevention and reduction of the effects caused by pandemic stress in the human body.


Subject(s)
Antioxidants/therapeutic use , Immune System , Plant Oils/therapeutic use , Yogurt , Alginates , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections , Humans , Pandemics , Pneumonia, Viral , Romania , SARS-CoV-2 , Stress, Psychological/immunology
SELECTION OF CITATIONS
SEARCH DETAIL